Genetically Modified Organisms and Agricultural Labor Productivity

Robert G. Chambers and Yu Sheng

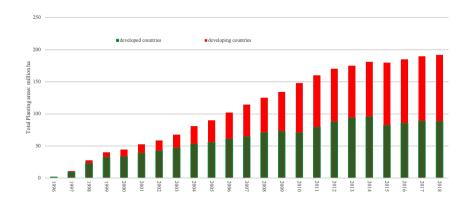
University of Maryland and Peking University

Dec. 8th, 2021

Dec. 8th, 2021

Introduction

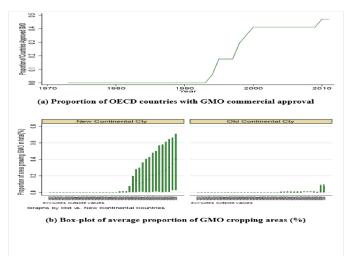
- Biotechnological innovations in the form of genetically modified organisms (GMOs) and gene-edited crops are believed to have revolutionized agricultural production.
 - Wheeler ad von Braun 2013; Bailey-Serres et al. 2019; Eshed and Lippman 2019; Zaidi et al. 2019 etc.
- Little is known about their aggregate impact.


- 4 回 ト 4 ヨ ト 4 ヨ ト

Introduction

- Using a cross-country panel for 15 OECD countries, we investigate the impact of GMO introduction on aggregate agricultural labor productivity
 - United States, Canada, Australia, and 12 European Union countries
 - Labor productivity = aggregate agricultural value added per unit of labor.

< □ > < □ > < □ > < □ > < □ > < □ >

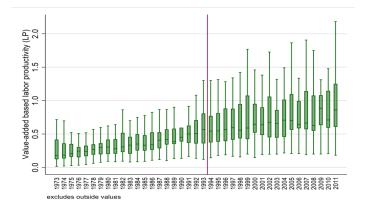

Figure 1. Area planted to GMO crops: developed vs. developing countries: 1996-2018

Source: ISAAA (2020)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Figure 2. GMO adoption in 15 OECD countries

Source: ISAAA (2020)


Robert G. Chambers and Yu Sheng

Dec. 8th, 2021 5 / 14

3

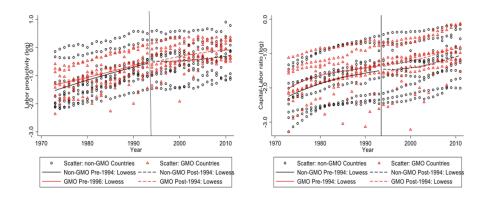
A D N A B N A B N A B N

Figure 3. Box plot of agricultural labor productivity for the 15 OECD countries

Source: Authors' own estimation.

Model and method

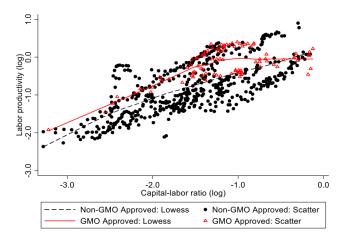
Following the macroeconomic tradition, aggregate value added in agriculture, Y, is a constant returns Cobb-Douglas function of capital, K, and labor, L:


$$Y = AK^b L^{1-b},$$

where A represents *total factor productivity*. Dividing both sides of this expression by L and taking natural logarithms:

$$\ln y = a + b * \ln k,$$

where $a = \ln A$ and lower case letters represent variates represented in per unit of labor terms, $y = \frac{Y}{L}$, labor productivity and $k = \frac{K}{L}$, capital-labor ratio


Figure 4. Change in labor productivity and capital-labor ratio for 15 OECD countries

Source: Authors' own estimation.

< ロ > < 同 > < 回 > < 回 >

Figure 5. the y-k relationship between the GMO approved and non-approved countries: 1973-2011

Source: Authors' own estimation.

Robert G. Chambers and Yu Sheng

Model and method

Our specification is:

$$\ln y(0)_{it} = a(0)_{it} + b(0)_{it} * \ln k_{it}$$

for a non-GMO technology and

$$\ln y (1)_{it} = a (1)_{it} + b (1)_{it} * \ln k_{it}$$

for a GMO technology.

Let G_{it} denote a GMO indicator variable and y_{it} observed value of labor productivity.

$$\ln y_{it} = G_{it} \ln y (1)_{it} + (1 - G_{it}) \ln y (0)_{it},$$

whence

$$\ln y_{it} = a(0)_{it} + b(0)_{it} * \ln k_{it} + \alpha_{it}G_{it} + \beta_{it}G_{it} \ln k_{it},$$

where $\alpha_{it} = a(1)_{it} - a(0)_{it}$ and $\beta_{it} = b(1)_{it} - b(0)_{it}$ Dec. 8th, 2021 10/14

Empirical specification

• Baseline empirical model specification is written as:

 $lny_{it} = c_0 + c_1 T_t + g_0 lnk_{it} + g_1 T_t lnk_{it} + \overline{\alpha_{it}} G_{it} + \overline{\beta_{it}} G_{it} \ln k_{it} + u_i + v_t + \epsilon_{it},$

where ϵ_{it} is a white noise.

- Three econometric issues to be resolved
 - GMO adoption is not randomly assigned: Neighborhood matching
 - Endogeneity: Fixed-effect (FE) model and FE-IV model
 - Disparity in GMO adoption intensity across countries:
 GMO adoption intensity used to reweight observations.

< □ > < □ > < □ > < □ > < □ > < □ >

Dec. 8th, 2021

Results

Table 1. Regression results for the FE-IV models

	Base Model (Full Sample)		P-score Match 2-v (Sub Sample	
	No lnkl	With Inkl	No lnkl	With Inkl
	(1)	(2)	(3)	(4)
Dependent variable: agricultural output per capita (log): ln yl				
¢1	1.096***	0.588**	0.985***	0.370**
	(0.095)	(0.248)	(0.116)	(0.182)
\mathbf{g}_0		0.623***		0.794***
~	-	(0.218)	-	(0.207)
g1	-	0.232***	-	0.314**
	-	(0.0733)	-	(0.124)
$\overline{\alpha_{it}}$	0.184***	-0.861***	0.234***	-0.577**
	(0.059)	(0.303)	(0.068)	(0.277)
$\overline{\beta_{it}}$	- 1	-0.850***	-	-0.704***
	-	(0.236)	-	(0.229)
Control GMO Adoption cty. group		. ,		. ,
β _{GA}	-	0.244	-	0.080
	-	(0.174)	-	(0.170)
ui	Yes	Yes	Yes	Yes
vt	Yes	Yes	Yes	Yes
Heteroskedasticity	Yes	Yes	Yes	Yes
Number of Observations	585	585	453	453
R-squared	0.783	0.840	0.763	0.853
Number of countries	15	15	15	15

Note: The first-stage regression results are available upon request. The F-statistics for the over-identification test have all been passed. Robust standard errors in parentheses, and *** $p_i0.01$, ** $p_i0.05$, * $p_i0.1$.

Concluding Remarks

- Biotechnology and GMOs promise to revolutionize agricultural production
- Widespread evidence exists from micro-oriented studies
- Aggregate labor productivity and TFP appear to have been negatively affected
- If accurate, why? Value added?

- 4 回 ト 4 三 ト 4 三 ト

Dec. 8th, 2021

Choice of instrumental variables

- For propensity score based neighbor matching:
 - GDP per capita (from the Penn World Table 10.0);
 - The relative price of intermediate inputs.
- The instrument used for dealing with the endogeneity problem:
 - "the relative price of capital to labor in agriculture" (for capital-labor ratio);
 - "the total number of GMO events in the past 10 years" and "the number of patents related to GMOs" (for GMO adoption).

・ 何 ト ・ ヨ ト ・ ヨ ト

Dec. 8th, 2021